
InfinityTutorials Quake-C CoD Handbook

1 of 27

InfinityTutorials Quake-C CoD Handbook

2 of 27

PrefacePrefacePrefacePreface

Hi, I am Tristan. I am the creator of www.InfinityTutorials.com. I love programming, modding,
gaming and best of all teaching others. That’s why I strive to create a trusted modding &
mapping community for everyone to join, gain experience & knowledge from.

This book should help you to understand the fundamentals of Quake-C programming for Call of
Duty. By the end of it, you should feel comfortable with Quake-C, its layout, and how it works.

I hope you take away as much as you can from this book, and if you need help on any topic, or
more advanced topics, please visit the website, and we’ll be more than happy to help you.

So get ready, get modding and enjoy!

InfinityTutorials Quake-C CoD Handbook

3 of 27

Chapter 1 Chapter 1 Chapter 1 Chapter 1 –––– Variables & Operators Variables & Operators Variables & Operators Variables & Operators

InfinityTutorials Quake-C CoD Handbook

4 of 27

WelcomeWelcomeWelcomeWelcome

Welcome to the InfinityTutorials Quake-C CoD Handbook. By reading this book from start to
finish, you’ll expect to be up and running making mod’s for CoD in no time! Scripting isn’t very
hard, and as long as you’re patient and you read closely, you’ll be a Quake-C master in a few
days with a little practice.

Alright, to start your programming adventure, you’ll need a few tools. Even though these are
optional, they will make your programming experience a better & more organized one. The first
is a syntax highlighting text editor. I recommend programmers notepadprogrammers notepadprogrammers notepadprogrammers notepad, and I have included a
copy for you in the SoftwareSoftwareSoftwareSoftware folder. Using a program like this, you can create & organize
projects, edit & create your scripts, and the best of all, it include syntax highlighting. If you’re
unsure what syntax highlighting is, here’s an example:

Normal Code:Normal Code:Normal Code:Normal Code:

my_function()

{

 new_variable = “Hello World”;

 self IPrintLnBold(new_variable);

}

Code with Syntax Highlighting:Code with Syntax Highlighting:Code with Syntax Highlighting:Code with Syntax Highlighting:

my_function()

{

 new_variable = “Hello World”;

 self IPrintLnBold(new_variable);

}

As you can see, syntax highlighting helps you to distinguish between variables, operators,
strings and keywords, which we will cover later in the book.

The second tool, is a Zip compressor & extractor. Now, tools like WinWinWinWin----ZipZipZipZip and RARRARRARRAR will work,
but what happens if you don’t have them, and don’t want to spend the money buying them?
Well there is a great free alternative called 7777----Zip. Zip. Zip. Zip. You again can find a copy of this in the
Software Software Software Software folder.

InfinityTutorials Quake-C CoD Handbook

5 of 27

VariablesVariablesVariablesVariables

Variables are your best friend. They can hold numbersnumbersnumbersnumbers, stringsstringsstringsstrings or even simple things such as
TrueTrueTrueTrue and False.False.False.False. I don’t know of a single script that doesn’t contain at least 1 variable in it. This
is how important they are. Variables are much simpler in Quake-C than in similar languages like
C or C++. This also makes them a little less error prone, and easier to use. Here’s some
examples of variables and their properties:

my_number = 1;

The variable my_numbermy_numbermy_numbermy_number now holds the digit value 1111. A practical use for this type of variable
would be, for example, number_of_livesnumber_of_livesnumber_of_livesnumber_of_lives which would hold the number of lives a player has.

my_double = 2.0;

The variable my_doublemy_doublemy_doublemy_double now holds the double digit value 2.02.02.02.0. You could use this to store a
players points for example.

my_message = “Hello World”;

The variable my_messagemy_messagemy_messagemy_message now holds the string “Hello World”“Hello World”“Hello World”“Hello World”. You could use this type of
variable to hold a custom HUD element message, or a welcome message.

As you can see, the general format of a variable is:

name = value;

Remember to always end your lines & declarations with semi colons “;” or you will receive weird
looking console error messages. In Quake-C the semi colon lets the compiler know that you’re
finished with one line and that you’re about to start another. However, there are cases where

you don’t end a line with a semi colon, this is with loops, if/else statements etc.

InfinityTutorials Quake-C CoD Handbook

6 of 27

OperatorsOperatorsOperatorsOperators

Operators are the little things that manipulate variables. You can use operators to add,
subtract, divide & multiply variables. They are extremely useful, and you’re bound to use them
in tons of scripts. Here are some examples of operators in use:

number_one = 1;

number_two = 2;

the_result = number_one + number_two;

In this example, number_onenumber_onenumber_onenumber_one and number_twonumber_twonumber_twonumber_two are added together, and the result is placed in
the variable the_resultthe_resultthe_resultthe_result. Thus, the variable the_resultthe_resultthe_resultthe_result now holds the value 3333.

number_one = 1;

number_two = 2;

the_result = number_two - number_one;

In this example, number_onenumber_onenumber_onenumber_one is subtracted from number_twonumber_twonumber_twonumber_two, and the result is placed in the
variable the_resultthe_resultthe_resultthe_result. Thus, the variable the_resultthe_resultthe_resultthe_result now holds the value 1111.

number_one = 1;

number_two = 2;

the_result = number_one * number_two;

In this example, number_onenumber_onenumber_onenumber_one and number_twonumber_twonumber_twonumber_two are multiplied, and the result is placed in the
variable the_resultthe_resultthe_resultthe_result. Thus, the variable the_resultthe_resultthe_resultthe_result now holds the value 2222.

number_one = 4;

number_two = 2;

the_result = number_one / number_two;

In this example, number_onenumber_onenumber_onenumber_one and number_twonumber_twonumber_twonumber_two are divided, and the result is placed in the
variable the_resultthe_resultthe_resultthe_result. Thus, the variable the_resultthe_resultthe_resultthe_result now holds the value 2222.

InfinityTutorials Quake-C CoD Handbook

7 of 27

number_one = 4;

number_one++;

In this example, the ‘++’++’++’++’ simply means, increase the value by 1111. You can also decrease a value
by 1111 using ‘ ‘ ‘ ‘--------‘‘‘‘, an example: number_one--;

Now, what happens if you want to add 2, 3, 42, 3, 42, 3, 42, 3, 4 etc to a variable? Or want to multiply the
variable’s value by a certain number? Well, you can do it like this:

number = 1;

numer = number + 2;

In the above example, numbernumbernumbernumber is given the value 1111, then, it’s set to equal itself, plus 2222. Which
simply means, that in the end, numbernumbernumbernumber now equals 3333.

A shorter way of doing this is:

number = 1;

number += 2;

This shorter version above achieves the same result as the previous example. This shortcut
works with all the operators. So for example, if you wanted to dividedividedividedivide a variable by 2222, then
multiplymultiplymultiplymultiply it by 5555, this is how it would be set-up:

number = 10;

number /= 2;

number *= 5;

At the end of this, numbernumbernumbernumber would now hold the value 25252525.

InfinityTutorials Quake-C CoD Handbook

8 of 27

Chapter 2 Chapter 2 Chapter 2 Chapter 2 –––– Functions & Loops Functions & Loops Functions & Loops Functions & Loops

InfinityTutorials Quake-C CoD Handbook

9 of 27

FunctionsFunctionsFunctionsFunctions

Functions are a vital part of any programming language, and Quake-C is no different. Functions
help organize your code and allow you to perform more advanced tasks.

So lets dive right in, here is an example of a small function:

my_function()

{

 return 5;

}

As you can see, functions start with a name to uniquely identify them. Their names cannot Their names cannot Their names cannot Their names cannot
contain anythincontain anythincontain anythincontain anything except letters, numbers and underscoresg except letters, numbers and underscoresg except letters, numbers and underscoresg except letters, numbers and underscores. Their names cannot start with a
number or contain spaces. They then continue with a left bracket & a right bracket. Then they
continue with a left open curly brace. After this brace you type the code you want executed
when your function is called. You then end the function with a right closed curly brace. One
thing to note is that Quake-C isn’t picky about how your code is laid out, so the following is
completely acceptable:

my_function(){ return 5; }

Now, you may be asking, what does returnreturnreturnreturn do? Well, it’s a Quake-C keyword, and in this
example it returns the value 5.5.5.5. This value is sent to what ever function called it. So, a working
example would be:

the_number_five = my_function();

In this example, the_the_the_the_number_fivenumber_fivenumber_fivenumber_five now contains the value 5555 since my_functionmy_functionmy_functionmy_function returned the
value 5555 to it through the returnreturnreturnreturn keyword.

An important thing to note is that notnotnotnot all functions need to return a value, these functions are

usually called VoidVoidVoidVoid functions.

InfinityTutorials Quake-C CoD Handbook

10 of 27

Functions can perform a wide verity of operations when called. One very special feature of
functions are ParametersParametersParametersParameters. Parameters allow you to pass data into the function to work with.
So lets take a look:

add_five(my_arguement)

{

 temp = my_argument;

 temp += 5;

 return temp;

}

As you can see, you can place parameters between the two brackets next to the function
name. The parameter names follow the same rules of the function names. Lets see an example
of this function in use:

not_yet_ten = 5;

this_is_ten = add_five(not_yet_ten);

In this example, not_yet_tennot_yet_tennot_yet_tennot_yet_ten is initialized to 5555. Then we declare the variable this_is_tenthis_is_tenthis_is_tenthis_is_ten and
make it equal the function add_fiveadd_fiveadd_fiveadd_five, and we pass not_yet_tennot_yet_tennot_yet_tennot_yet_ten as an argument. Looking into
the function, we see it takes not_yet_tennot_yet_tennot_yet_tennot_yet_ten and places it into the variable my_argumentmy_argumentmy_argumentmy_argument. Then,
a new variable temptemptemptemp is created, and it’s set to equal my_argumentmy_argumentmy_argumentmy_argument.. 5555 is then added to temptemptemptemp
and then the function returns temptemptemptemp which in this case is now equals to 10101010 since the argument
passed into the function was equal to 5555. At the end of this whole procedure, the variable
this_is_tenthis_is_tenthis_is_tenthis_is_ten, equals, you guessed it, 10101010!

Ok, after that long winded example, you should have a clear understanding of how parameters
& arguments work. Now, another point to note is that you can have more than one parameter
like so:

add_numbers(number_one, number_two, number_three)

{

 return number_one + number_two + number_three;

}

the_result = add_numbers(1, 2, 3);

All that’s needed to use more parameters is that you separate them with comma’s… simple. In
that example the final variable the_resultthe_resultthe_resultthe_result would equal 6666.

InfinityTutorials Quake-C CoD Handbook

11 of 27

There’s one mistake a lot of people make though, and that’s using variables out side of their
scope. A scope is any section between the opening brace “{” and the closing brace “}”. Any
variables declared inside this scope can only be used inside this scope, and not anywhere
outside it. However, you can declare globalglobalglobalglobal variables which can be used out side of their
scopes. Here’s an example of a classic mistake:

function()
{
 local_var = 1;
}

result = local_var;

The example above would cause a compile error. This is because the variable local_varlocal_varlocal_varlocal_var is
declared in the functions scope, and then used outside of it’s scope when assigning it to
another variable. However, if you do want to perform an action like this, you can declare a
globalglobalglobalglobal variable:

function()
{
 self.global_var = 5;
}

result = self.global_var;

In CoD Quake-C the above is perfect code and will not generate any errors. In that example,
we used the keyword selfselfselfself which will be explained later.

InfinityTutorials Quake-C CoD Handbook

12 of 27

LoopsLoopsLoopsLoops

Ahh, loops, my favourite little function ☺. Loops allow you to repeat a process a set amount of
times, or a limited amount of times. Loops can be used to monitor variables, print messages,
check players etc, anything that needs constant attention or repeating.

There are two types of loops. The first we’ll look at is the whilewhilewhilewhile loop. Lets take a look at an
example:

number = 1;

while(number < 10)

{

 number += 1;

}

In this example, numbernumbernumbernumber is given the value 1111. A while loop works by checking the argument,
which in this case is “number < 10number < 10number < 10number < 10” to see if its truetruetruetrue or falsefalsefalsefalse. In this statement, it’s basically
saying, “Loop While Number Is Less, But Does Not Equal 10”. If your argument is trtrtrtrueueueue then the
loop performs the actions between the braces. When it gets to the last brace, it jumps back to
the top, and checks your statement again. If the statement is still truetruetruetrue, then it will perform the
actions between the braces again. This process will continue until the statement is falsefalsefalsefalse which
is this example would be when the variable numbernumbernumbernumber equals ten.

At the end of that loop, if we were to check the value of numbernumbernumbernumber we would see that it’s now
equal to 9999.

WhileWhileWhileWhile loops can also be set to loop forever. This is done by simply by adding an argument that
will never return false, like this:

while(1)

{

 something here…

}

OR

while(true)

{

 something here…

}

Since 1111 is 1111, there is nothing to check, it will always be true. Even better, just put trtrtrtrueueueue in there.

InfinityTutorials Quake-C CoD Handbook

13 of 27

Here’s an example of an infinite whilewhilewhilewhile loop in use:

while(true)

{

 IprintLnBold(“This is a looping message”);

 wait 5;

}

In this example, the message “This is a looping messageThis is a looping messageThis is a looping messageThis is a looping message” will be displayed every 5555 seconds
and will never end. If you’re unsure what some of those commands are, don’t worry, they will
be covered later.

The second loop we will cover is the forforforfor loop. Here is a example of one:

result = 0;

for(number = 0; number < 10; number++)

{

 result += number;

}

As you may have noticed, the forforforfor loop takes 3 arguments, the first is a declaration of a variable
or counter variable, the second is what to check for (same as the true/false for the while loop),
the third is what to do to the counter variable when 1 loop is finished. You must separate the
arguments with semi-colons.

In the example above, when the loop finishes (number = 10) the variable resultresultresultresult will equal 45454545.
You can also make infinite for(;;)for(;;)for(;;)for(;;) loops, but it’s a better choice to use a while(true) while(true) while(true) while(true) loop in that
case.

InfinityTutorials Quake-C CoD Handbook

14 of 27

Chapter 3 Chapter 3 Chapter 3 Chapter 3 –––– Arrays & Keywords Arrays & Keywords Arrays & Keywords Arrays & Keywords

InfinityTutorials Quake-C CoD Handbook

15 of 27

ArraysArraysArraysArrays

Arrays are possibly the greatest type of variable alive in my eyes. Arrays are a special type of
variable that can hold multiple entries of data, like a list of names, maps, scores etc.

Alright, lets look at how to make an array:array:array:array:

my_array = [];

my_array[0] = “Data 1”;

my_array[1] = “Data 2”;

We start arrays with the variable name, but then, instead of assigning a value to it, we assign [][][][]
to it (Two opening & closing square brackets). This declaration tells the compiler that the
variable my_arraymy_arraymy_arraymy_array is now an arrayarrayarrayarray. We then add data to the array by typing the variable name,
followed by a subscript. A subscript tells the compiler which part of the array to use/assign.
Array subscripts ALWAYSALWAYSALWAYSALWAYS start with zerozerozerozero. This is one thing you must learn, as it’s the case in
many programming languages. Learn it now, and it will save you grief later on. When you add
more data to the array, you must increase the subscript by 1111, and not 2222 or a fractionfractionfractionfraction etc. Here
is an example of an error:

my_broken_array = [];

my_broken_array[1] = “Eeek”;

my_broken_array[3] = “Yuck”;

In this example error, you see that we started the array subscript with 1111, and then incremented
it with 2222 instead of 1111. This is bad, don’t try this at home.

Now, arraysarraysarraysarrays work great with forforforfor loops. Here’s an example:

awesome_array = [];

for(int = 0; int < 10; int++)

{

 awesome_array[int] = int + 5;

}

In this example, awesome_arrayawesome_arrayawesome_arrayawesome_array is initialized, then we step into a for loop, where it sets the
first 9999 subscripts of awesome_arrayawesome_arrayawesome_arrayawesome_array to the value of intintintint plus 5555. So, if we had to check the value
of awesome_array[0]awesome_array[0]awesome_array[0]awesome_array[0] it would equal 5555, awesome_array[1]awesome_array[1]awesome_array[1]awesome_array[1] would equal 6666, awesome_array[2]awesome_array[2]awesome_array[2]awesome_array[2]
would equal 7777 etc. This array would only go up to awesome_array[9]awesome_array[9]awesome_array[9]awesome_array[9], so trying to access any
subscript like 10101010 or higherhigherhigherhigher would cause an error, or no error would be produced, but you’ll be
wondering why you’re script is acting funny.

InfinityTutorials Quake-C CoD Handbook

16 of 27

KeywordsKeywordsKeywordsKeywords

Alright, now that you know the essential basics of Quake-C, lets move on to some CoD
specific keywords.

1. waitwaitwaitwait = the time to wait in seconds
2. selfselfselfself = an alias to the entity that called the script
3. level level level level = an alias to the level (the main script)
4. waittill waittill waittill waittill = wait until another script notify’s a keyword
5. notify notify notify notify = used to trigger waittill
6. endonendonendonendon = used to kill a function on a notify
7. delete delete delete delete = delete an entity
8. destroy destroy destroy destroy = used to destroy structs & hud elements

These are just some of the few keywords available. Below I will give you examples of each.

wait wait wait wait | this will loop every 5 seconds

while(1)

{

 wait 5;

}

selfselfselfself | the player who called this script will be killed after 5 seconds

wait 5;

self suicide();

levellevellevellevel | grab an array of all the players

players = level.players;

waittillwaittillwaittillwaittill | this script will wait until “start_me” is notified

self waittill(“start_me”);

self suicide();

notifynotifynotifynotify | this will trigger any waittill’s with the same keyword, like the one above

self notify(“start_me”);

InfinityTutorials Quake-C CoD Handbook

17 of 27

endonendonendonendon | this functions dies when “Kill_Me” is notified

self endon(“Kill_Me”);

deletedeletedeletedelete | this will delete an entity

model = spawn(“script_model”, level.mapCenter);

model delete();

destroydestroydestroydestroy | this will destroy a hud elem

hud_elem = newHudElem();

hud_elem destroy();

For a full list of all the available functions & keywords, you can go to
www.InfinityTutorials.com/script or www.infinityward.com/Script/.

InfinityTutorials Quake-C CoD Handbook

18 of 27

Chapter Chapter Chapter Chapter 4 4 4 4 –––– If/Else & Switch If/Else & Switch If/Else & Switch If/Else & Switch

InfinityTutorials Quake-C CoD Handbook

19 of 27

If/Else StatementsIf/Else StatementsIf/Else StatementsIf/Else Statements

If/Else statements are conditional statements that are very, very useful. They can check the
state of a variable, make decisions based on data and many other cool things.

If/Else statements are actually very easy to learn. So lets dive right in:

my_num = 5;

if(my_num == 5)

{

 self IprintLnBold(“The number is five!”);

}

else

{

self IprintLnBold(“The number is NOT five!”);

}

In the above example, we initialize a variable called my_nummy_nummy_nummy_num to 5555. Then we use an IF()
statement to check if the number is equal to 5555. If it is, we print the message “The number is
five!”, and if the number is not 5555, we then display the message “The number is NOT five!”. If we
run the script like it is, we would see the first message, however, if we changed the variable
my_nummy_nummy_nummy_num at the top, to another number, the second message would be displayed because the
IF() check would see that my_nummy_nummy_nummy_num does not equal 5555, and so it wall fall back to the elseelseelseelse
statement.

You can also do multiple levels of If/Else statements. These are If/Else If/Else statements. They
look like:

num = 20;

if(num == 20)

 self IprintLnBold(“Num equals 20”);

else if(num > 20)

 self IprintLnBold(“Num is greater than 20”);

else

 self IprintLnBold(“Num is less than 20”);

Firstly, if you are wondering why the Curly Brackets have all disappeared, its because there’s a
neat trick with If, Else If, Else, For Loops and While Loops, and that is… if your statement will
only contain 1 line of code to execute, you don’t need to put curly brackets in. However, if it is

more than one line of code to be executed, then you havehavehavehave to put the curly brackets in.

InfinityTutorials Quake-C CoD Handbook

20 of 27

We see in the above example that the code will now check to see if numnumnumnum is equal, higher or
lower than 20.20.20.20.

Another neat trick with If, Else If, Else, For Loops and While Loops is that if you’re variable is a

Boolean variable, meaning it’s either truetruetruetrue or falsefalsefalsefalse, you can just type in the variable name to
check if it’s true, or put the bbbbangangangang character “!” in-front of the name to check if it’s false. See

below for an example.

is_dead = false;

if(is_dead)

 self IprintLnBold(“You are dead”);

else if(!is_dead)

 self IprintLnBold(“YAY! You’re not dead”);

In the above example, the if(is_dead)if(is_dead)if(is_dead)if(is_dead) is checking if is_deadis_deadis_deadis_dead equals true, and the elseelseelseelse if(if(if(if(
!is_dead)!is_dead)!is_dead)!is_dead) is checking whether is_deadis_deadis_deadis_dead is falsefalsefalsefalse, and in this case it is, so the player would
receive the message “YAY! You’re not dead”.

In most programming languages, zero is considered false, and anything non-zero is true.

Some good operators for if/else statements are && (Meaning AND), || (Meaning OR), ==

(Meaning EQUALS) and != (Meaning DOES NOT EQUAL)

InfinityTutorials Quake-C CoD Handbook

21 of 27

Switch BlocksSwitch BlocksSwitch BlocksSwitch Blocks

Switch blocks are usually used when you need to do multiple checks where and If/Else If
statement would be too long, or messy to type out.

Lets take a look at a switch statement:

my_number = 5;

switch(my_number)

{

 case 5:

 self IprintLnBold(“The number is 5”);

 break;

 case 6:

 self IprintLnBold(“The number is 6”);

 break;

 case 7:

 self IprintLnBold(“The number is 7”);

 break;

 default:

self IprintLnBold(“The number is not 5, 6, or 7”);

 break;

}

Now, don’t get too worried about it’s looks, yea, they look mean, but they can be a lot more
user friendly to use that huge blocks of If/Else statements.

In the example, we start by declaring a variable my_numbermy_numbermy_numbermy_number. We then start the switch block
with the keyword switchswitchswitchswitch and then in brackets what variable we will be comparing. Then, inside
the curly brackets, we start the comparisons. We start one comparison with the keyword casecasecasecase
followed by what we want to compare it too, then end it with a colon. Under that, we place
the code we want executed if the variable equals the casecasecasecase, we then follow that with the
break;break;break;break; keyword to let the script know we’re done inside the switch block. At the very bottom,
we add a keyword called defaultdefaultdefaultdefault followed by a colon. Under here we put the code that will be
executed if the variable doesn’t match any of the cases, again, followed by a break;break;break;break;

InfinityTutorials Quake-C CoD Handbook

22 of 27

Chapter 5 Chapter 5 Chapter 5 Chapter 5 –––– Lets start Scripting Lets start Scripting Lets start Scripting Lets start Scripting

InfinityTutorials Quake-C CoD Handbook

23 of 27

Let’s StartLet’s StartLet’s StartLet’s Start

All right, you feel like making a mod yet? Well I hope you do!

To follow along with this book, you need to install the modmodmodmod tools tools tools tools for Call of Duty 4. These can
be found here http://www.media.iwnation.com/COD4/.

With the mod tools installed, you’ll have access to all the raw files needed to start scripting a
mod for the game.

If you’re mainly wanting to script for CoD4, you will only need to turn your attention to the
raw raw raw raw ���� maps maps maps maps folder. This is where all the raw scripts for Call of Duty 4 are located.

Whenever you see [root][root][root][root] below, its an alias for you Call of Duty 4 installation directory, which
is defaults too C:C:C:C:\\\\Program FilesProgram FilesProgram FilesProgram Files\\\\ActivisionActivisionActivisionActivision\\\\Call of Duty 4 Call of Duty 4 Call of Duty 4 Call of Duty 4 ---- Modern Warfare. Modern Warfare. Modern Warfare. Modern Warfare.

OK, you’re ready to go!

InfinityTutorials Quake-C CoD Handbook

24 of 27

Example Anti Camp ScriptExample Anti Camp ScriptExample Anti Camp ScriptExample Anti Camp Script

For our first task, I’ll teach you how to script an anti camp function. From now on, I’ll refer to
the anti camp function as the ACF.

So what is needed in an ACF? Well, we need to monitor the players to make sure they are not
sitting in one spot for too long. If they are sitting in one spot for too long, lets warn them that
they are camping & give them 10 seconds to move. If they don’t move within those 10 seconds,
we’ll punish them by killing them.

So already we can see we need a couple of things:

1. A while loop that constantly monitors the player
2. A function to somehow see how far a player has moved in a certain amount of time
3. A function to punish the player
4. A timer to check against.

So, lets start with our variables:

my_camp_time = 0;

have_i_been_warned = false;

max_distance = 80;

camp_time = 30;

my_camp_timemy_camp_timemy_camp_timemy_camp_time will be the time in seconds the player has sat in one spot.
have_i_been_warned have_i_been_warned have_i_been_warned have_i_been_warned will either be false if they haven’t been warned about camping, or true if
they have been warned.
max_distancemax_distancemax_distancemax_distance is the distance the player needs to move within the camp_timecamp_timecamp_timecamp_time limit to not be
considered a camper.

Now, we need to somehow check how far the player has moved on a constant basis. If they
haven’t moved further than the max_distancemax_distancemax_distancemax_distance we need to increment the my_camp_timemy_camp_timemy_camp_timemy_camp_time
variable. Then we need to check my_camp_timemy_camp_timemy_camp_timemy_camp_time against camp_timecamp_timecamp_timecamp_time, and if they are equal, we
need to warn the player & set the have_i_been_warnedhave_i_been_warnedhave_i_been_warnedhave_i_been_warned to true. We then give the player 10
seconds to move, and if he doesn’t. bam! We kill him.

So, I head over to http://infinityward.com/Script/ and look for a distance function, and what do
you know? They have one called distance()distance()distance()distance() and distance2d()distance2d()distance2d()distance2d(). The distance2d()distance2d()distance2d()distance2d() looks like the
one we need. So lets set-up our while loop:

InfinityTutorials Quake-C CoD Handbook

25 of 27

level waittill(“prematch_over”);

self endon(“death”);

my_camp_time = 0;

have_i_been_warned = false;

max_distance = 80;

camp_time = 30;

while(1)

{

 old_position = self.origin;

 wait 1;

 new_position = self.origin;

 distance = distance2d(old_position, new_position);

 if(distance < max_distance)

 my_camp_time++;

 else

{

 my_camp_time = 0;

 have_i_been_warned = false;

}

 if(my_camp_time == camp_time && !have_i_been_warned)

 {

 self IprintLnBold(“Please stop camping, 10 seconds to

move”);

 have_i_been_warned = true;

}

if(my_camp_time == (camp_time + 10) &&

have_i_been_warned)

{

self IprintLnBold(“You will be killed for camping!”

);

wait 2;

 self suicide();

}

}

Now, that alone won’t do anything, so, lets throw it in a custom function called _AntiCamp()_AntiCamp()_AntiCamp()_AntiCamp().

Path 1:Path 1:Path 1:Path 1:
OK, if you have the mod tools installed, go to [root] [root] [root] [root] ���� raw raw raw raw ���� maps maps maps maps ���� mp mp mp mp ���� gametypes gametypes gametypes gametypes.

Path 2:Path 2:Path 2:Path 2:
Now open a new window, and navigate to [root] [root] [root] [root] ���� mods mods mods mods. Inside that folder, make a new
folder called MyModTestMyModTestMyModTestMyModTest. Inside that folder, build a folder structure like this: maps maps maps maps ���� mp mp mp mp ����

InfinityTutorials Quake-C CoD Handbook

26 of 27

gamgamgamgametypes.etypes.etypes.etypes. Now, take dm.gsc dm.gsc dm.gsc dm.gsc from Path 1Path 1Path 1Path 1, and place it in MyModTest MyModTest MyModTest MyModTest ���� maps maps maps maps ���� mp mp mp mp ����
gametypes.gametypes.gametypes.gametypes. Now open it in Programmers Notepad.

With it open, copy & paste your function to the bottom of the file, after all the other functions.
Then, find the function onPlayeonPlayeonPlayeonPlayerSpawn()rSpawn()rSpawn()rSpawn(), and at the bottom of the function type:

self thread _AntiCamp();

What this does is “threads” our function. Threading means the function will be called & the
code will carry on without it’s return happily. If we don’t place the “thread” keyword there, the
script would stop and wait until _AntiCamp()_AntiCamp()_AntiCamp()_AntiCamp() has finished, and then continue.

You can find the working mod in the SourceSourceSourceSource folder (You can open the .zip with the 7-Zip
application I included). To run a mod, start up cod4, then go to mods, select your mod and hit
launch.

To test this mod out, make a new Free-For-All server, sit still for 30 seconds and watch your
anti camp script in action!

InfinityTutorials Quake-C CoD Handbook

27 of 27

Well I hope you enjoyed the Handbook, and that I have inspired you to start scripting!

Thank you for reading.Thank you for reading.Thank you for reading.Thank you for reading.

If you feel like donating, please visit www.InfinityTutorials.com and click the Donate button at

the bottom of the page.

Copyright (C) 2008 Tristan S. Strathearn.

All Rights Reserved

